Statistical Forecast
The N2 Forecast module provides N2 nodes for creating statistical forecasts in the N2 environment for Odoo by exposing StatsForecast models. It enables data-driven forecasting based on historical time-series data and can be integrated into N2 workflows.
Dependencies
This module depends on the following modules *:
n2n2_uin2_triggern2_data
*Built-in modules not listed
Core Forecast Nodes
ForecastDataNode
ForecastDataNode is responsible for extracting time-series data from Odoo models and transforming it into a DataFrame format compatible with StatsForecast models.
Parameters
keyRawmodelRaworder_byRawselected_fieldsRaw Eval
TrainNode
TrainNode is used to train a forecasting model using prepared historical data and a selected forecast model node.
Parameters
model_nameRawfreqRaw
ForecastNode
ForecastNode generates future predictions using a previously trained forecast model.
Parameters
forecast_model_idRawhorizonRaw
ForecastModelStoreNode
ForecastModelStoreNode is used to persist trained models produced by the TrainNode.
ForecastResultStoreNode
ForecastResultStoreNode persists the forecast outputs generated by the ForecastNode.
Forecast Model Nodes
HistoricAverageNode
The HistoricAverageNode represents the Historic Average Model.
ArimaNode
The ArimaNode represent the ARIMA Model.
Parameters
pRawdRawqRawPRawDRawQRawmRaw
AutoArimaNode
AutoArimaNode represents the AutoARIMA model, which automatically selects optimal ARIMA parameters.
Parameters
dRawDRawseason_lengthRawapproximationRawseasonalRaw
AutoEtsNode
AutoEtsNode represents the AutoETS (Error, Trend, Seasonality) model.
Parameters
season_lengthRawmodelRawdampedRawphiRaw
AutoThetaNode
AutoThetaNode represents the AutoTheta forecasting model.
Parameters
season_lengthRawmodelRawdecomposition_typeRaw
Preprocessors
FillGapsNode
Use FillGapsNode fills missing timestamps in irregular time series.
Parameters
freqRaw
TimeAggregateNode
Use TimeAggregateNode aggregates time-series data into a coarser frequency.
Parameters
freqRawmethodRaw